BASIC EQUATIONS OF MACROSCOPIC ELECTRODYNAMICS

Introduction

1.1	MACROSCOPIC
	ELECTRODYNAMICS
1.1.1	Duality of Electromagnetic Waves
1.1.2	Vector and Scalar Fields
1.2	FUNDAMENTAL PRINCIPLES
	OF ELECTRODYNAMICS
1.2.1	Symmetry in Nature and Conservation
	Laws
1.2.2	Conservation Laws
1.2.3	Nothing Exists Until It Is Measured
1.3	INTERNATIONAL METRIC
	SYSTEM OF UNITS (SI)
1.3.1	Nothing Exists Until It Is Defined and
	Measured in Units
1.3.2	Derived SI Units
1.3.3	Dimensional Analysis and Unit Law
1.3.4	Table of Mathematical Operators in Use
1.4	EM FIELD SENSORS
1.4.1	Electric Monopole, Dipole, and Current
	Element as Field Sensors
1.4.2	Electric Current and its Volume Density
1.4.3	Charge Volume Density
1.4.4	Magnetic Sensors
1.5	MAXWELL'S HOUSE
1.5.1	Introduction
1.5.2	Lorentz's Force Equation (Axiom #1)
1.5.3	Maxwell's House of Electrodynamics

1.6 ELECTRIC AND MAGNETIC FIELD VECTORS

- 1.6.1 Vector of Electric Field Strength
- 1.6.2 Electric Potential
- 1.6.3 Line of Force

1.6.4	Gauss's Law for Electric Fields
	(Axiom #2) and Coulomb's Law
1.6.5	Is The Inverse-Square Relation
	Imperative?
1.6.6	How Much Is One Coulomb (C)?
1.6.7	Electric Field Reality
1.6.8	Displacement Vector D.
	3rd Maxwell's Equation
1.6.9	Why Do We Need Extra D-Vector
	Describing E-Fields?
1.6.10	Electric Charge Conservation Law in
	Differential Form
1.6.11	Lorentz's Force Equation and
	1st Maxwell's Equation
1.6.12	Is Magnetic Inductance Real and
	Can Be Measured?
1.6.13	Gauss's Law for Magnetic Field
	(Axiom #3). 4th Maxwell's Equation
1.6.14	Magnetic Lines of Force
1.6.15	Vector of Magnetic Field Strength.
	2nd Maxwell's Equation
1.6.16	Net Current Continuity and
	2nd Maxwell's Equation
1.6.17	Electric and Magnetic Energy
1.7	ELECTRIC CURRENT AND
	CHARGES AS SOURCES OF
	EM FIELDS

- 1.7.1 Currents and Charges as Sources of EM Fields
- 1.7.2 Convection Charges and Currents

1.8 MAXWELL'S EQUATIONS IN PHASOR FORM

- 1.8.1 Time and Frequency Domain
- 1.8.2 Maxwell's Equations in Phasor Form

NEOCLASSICAL THEORY OF INTERACTION OF ELECTRIC AND MAGNETIC FIELDS WITH MATERIAL MEDIA

Introduction

2.1	TORQUE EXERTED BY ELECTRIC
	AND MAGNETIC FIELD
2.1.1	Mechanical Torque Examples

- 2.1.2 Torque Exerted by Magnetic Field
- 2.1.3 Torque Exerted by Electric Field

2.2 PHENOMENA OF ELECTRIC AND MAGNETIC POLARIZATION. ELECTRICAL CONDUCTANCE

- 2.2.1 Phenomena of Electric Polarization
- 2.2.2 Polarization Vector. Permittivity and Dielectric Constant
- 2.2.3 Dielectric Constant of Composite Materials
- 2.2.4 Dielectric Constant of Anisotropic Materials
- 2.2.5 Phenomena of Magnetic Polarization
- 2.2.6 Phenomena of Electric Conductance
- 2.2.7 Polarized Conductive Body in Electric Fields
- 2.2.8 Ohm's Law
- 2.2.9 Per Square Resistance

2.3 BOUNDARY CONDIONS

- 2.3.1 Introduction
- 2.3.2 Boundary Conditions on Normal Components of Field
- 2.3.3 Boundary Conditions for Tangential Components of Field
- 2.3.4 Dielectric-Dielectric Interface
- 2.3.5 Dielectric-Perfect Electric Conductor (PEC) Interface
- 2.3.6 Superconductors
- 2.4 CLASSIFICATION OF MATERIALS BASED ON THEIR ELECTRICAL AND MAGNETIC PROPERTY
- 2.4.1 Complex-Valued Dielectric and Magnetic Constant
- 2.4.2 Classification of Materials Based on Their Electrical Property
- 2.4.3 Linearity and Nonlinearity

2.5 BROADBAND COMPLEX-VALUED MATERIAL PARAMETERS

- 2.5.1 Introduction
- 2.5.2 Drude-Lorentz's Model of Metal Dielectric Constant

- 2.5.3 Ionospheric Plasma with Negative Dielectric Constant
- 2.5.4 Broadband Complex Constant $\epsilon_r (\omega)$ of Dielectrics

2.6 FERRO-MATERIALS

- 2.6.1 Introduction
- 2.6.2 Basic Description of Ferro-Materials
- 2.6.3 Ferromagnetics
- 2.6.4 Ferrimagnetic and Ferrites
- 2.6.5 Complex Magnetic Constant of Non-Magnetized Ferrite
- 2.6.6 Ferroelectrics

2.7 EM FIELDS IN MAGNETIZED FERRITES

- 2.7.1 Introduction
- 2.7.2 Free Precession in Fully Magnetized Ferrite
- 2.7.3 Force Precession in Fully Magnetized Ferrite
- 2.7.4 Permeability of Fully Magnetized Ferrite

2.8 METAMATERIALS

- 2.8.1 Introduction
- 2.8.2 Negative Permittivity and Permeability

2.9 GRAPHENE

2.9.1 Introduction

- 2.9.2 Graphene as a Conductor
- 2.9.3 Conductivity of Magnetically Biased Graphene
- 2.9.4 Graphene as Shielding Material
- 2.9.5 Conductive Graphene NanoRibbon (GNR) Thin Film as Deicing Coating
- 2.9.6 Graphene-Based Electromechanical Switch

2.10 SOME ADDITIONAL PROPERTIES OF MATERIALS

- 2.10.1 Kramers-Kronig (K-K) Relations
- 2.10.2 Eliminating Negative Frequencies in the K-K Relations
- 2.10.3 Remote Sensing and K-K Relations
- 2.10.4 Eddy Current
- 2.10.5 Eddy Current in Power Transformer Core

POYNTING's THEOREM

Introduction

3.1 ELECTROMAGNETIC FIELD CONSERVATION LAWS

- 3.1.1 Conservation of Energy in Space-Time Domain
- 3.1.2 Power Delivered by Excitation Currents
- 3.1.3 Voltage, Current and Power Loss
- 3.1.4 Power Stored in Electromagnetic Fields
- 3.1.5 Electromagnetic Power Flux and Poynting Vector
- 3.1.6 Velocity of EM Waves Energy Transportation
- 3.1.7 Linear Momentum of EM Fields. Radiation Pressure and Solar Sailing
- 3.1.8 Angular Momentum of EM Fields. Polarization. Twisted EM Waves
- 3.1.9 Collecting the Results
- 3.1.10 Poynting Theorem and Circuit Analysis
- 3.1.11 Concept of Capacitance
- 3.1.12 Concept of Inductance
- 3.1.13 Parasitic Parameters
- 3.1.14 Self Resonances in Capacitor and Solenoid
- 3.1.15 Why did We Pay so Much Attention to the Lumped Circuit Elements?
- 3.1.16 Poynting Theorem in Space-Frequency Domain

3.2 UNIQUENESS THEOREM FOR INTERIOR ELECTROMAGNETICS PROBLEMS

- 3.2.1 Necessary of Uniqueness Theorem
- 3.2.2 Uniqueness Theorem in Space-Time Domain
- 3.2.3 Uniqueness Theorem in Space-Frequency Domain
- 3.2.4 Cavity Resonators
- 3.2.5 Quality Factor Q of Cavity Resonator

3.3 UNIQUENESS THEOREM FOR EXTERIOR ELECTROMAGNETICS PROBLEMS

- 3.3.1 Radiation Condition
- 3.3.2 Edge Boundary Condition
- 3.3.3 Influence of Conductive Surface Curvature on Electric Charge and Current Distribution
- 3.3.4 Field Electron Emission
- 3.3.5 How to Treat Problem of Field Singularities in Numerical Simulation?

3.4 REFLECTION CONCEPT. LORENTZ'S RECIPROCITY THEOREM

- 3.4.1 Concept of Reflection and Impedance
- 3.4.2 Foster's Reactance Theorem
- 3.4.3 Lorentz's Reciprocity Theorem
- 3.4.4 Receive-Transmit Antenna Reciprocity
- 3.4.5 Ultra-WideBand (UWB) Antenna Impulse Response (Response in the Time Domain)
- 3.4.6 Reciprocity and Antenna Radiation Pattern Measurement

SOLUTION OF BASIC EQUATIONS OF ELECTRODYNAMICS

Introduction

4.1 WAVE AND HELMHOLTZ'S EQUATIONS

- 4.1.1 Wave Equation for Electric and Magnetic Vectors in Space-Time Domain
- 4.1.2 Wave Equation in Space-Frequency Domain. Wavenumber
- 4.1.3 Electrodynamic Potentials in Space-Time Domain
- 4.1.4 Is It Vector and Scalar Potentials are Real?
- 4.1.5 Symmetry of Maxwell's Equations and Principle of Duality. Electrodynamic Potentials for Magnetic Sources
- 4.1.6 Electrodynamic Potentials in Space-Frequency Domain
- 4.1.7 Green's Function for Static Fields for Unbounded Space
- 4.1.8 Wave Equation. One-Dimensional Unbounded Space
- 4.1.9 General Solution of Wave Equations and Green's Function
- 4.1.10 Potentials and Green's Function in Space-Frequency Domain

4.2 HARVEST TIME. RADIATION OF ELECTROMAGNETIC WAVES

- 4.2.1 Introduction
- 4.2.2 Radiation EM Waves by Infinitesimal Current Element

4.3 ELEMENTARY RADIATORS

- 4.3.1 Electric and Magnetic Fields Emitted by Infinitesimal Current Element
- 4.3.2 Electrically Small Current Loop
- 4.3.3 Loop Antenna as Magnetic Dipole
- 4.3.4 Huygens' Principle and Huygens' Radiator
- 4.4 CLASSIFICATION OF MATERIALS BASED ON THEIR ELECTRICAL AND MAGNETIC PROPERTY
- 4.4.1 Skin Effect in Conductive Materials. Impact of Surface Roughness
- 4.4.2 Surface Resistivity
- 4.4.3 Conclusion

ANTENNA BASICS

Introduction

5.1 EM WAVE POLARIZATION

- 5.1.1 Classification of Common Polarization
- 5.1.2 Co- and Cross-Polarization
- 5.1.3 Twisted EM Waves
- 5.1.4 How Can Antenna Polarization Be Chosen?

5.2 ANTENNA PARAMETERS

- 5.2.1 Introduction
- 5.2.2 Radiation Resistance and Lumped Equivalent Circuit of Antenna
- 5.2.3 Return Loss
- 5.2.4 Antenna Quality Factor (Q factor), Bandpass and Radiation Efficiency
- 5.2.5 Near-field Zone vs. Far-field Zone
- 5.2.6 Radiation Pattern. Main Beam, Beamwidth, and Sidelobes
- 5.2.7 Sidelobes Specification. Grating Lobes
- 5.2.8 Antenna Noise Temperature
- 5.2.9 TEM Waves in Far-Field Zone
- 5.2.10 Directivity and Gain
- 5.2.11 Antenna Effective Aperture
- 5.2.12 Directivity, Effective Aperture and HPBW
- 5.2.13 G/T Parameter
- 5.2.14 Antenna Factor
- 5.2.15 Antenna Power Handling

5.3 SYSTEM REQUIREMENTS AND ANTENNA GAIN

- 5.3.1 Introduction
- 5.2.2 Path Loss (Friis Transmission Formula) and EIRP
- 5.3.3 Monostatic Radar Equation
- 5.3.4 Bistatic Radar Equation
- 5.3.5 Multiple Input Multiple Output (MIMO) Radar System

5.4 DECOMPOSITION or 'DIVIDE and CONQUER' TACTIC

5.5 ANTENNA ARRAY FACTOR AND MAGNETIC PROPERTY

- 5.5.1 Introduction
- 5.5.2 Basic of Linear Array Analysis
- 5.5.3 Pattern Multiplication
- 5.5.4 Basic of Linear Array Synthesis
- 5.5.5 Phasor-Vector Interpretation of Array Pattern
- 5.5.6 Linear Arrays with Progressive Phase Distribution and Their Feed
- 5.5.7 Radiation of Linear Array with Progressive Phase Excitation
- 5.5.8 Continuous Linear Array

5.6 BEAM STEERING TECHNIQUES

- 5.6.1 Introduction
- 5.6.2 Linear Array Beam Steering
- 5.6.3 Grating Lobe vs. Beam Steering
- 5.6.4 True Time Delay (TTD) Steering
- 5.6.5 Frequency Scan
- 5.6.6 Within-Pulse Scan Technique
- 5.6.7 Synthetic Aperture Radar (SAR)
- 5.6.8 Linear Array with Multiple Simultaneous Beams

5.7 PLANAR AND CONFORMAL ARRAYS

- 5.7.1 Planar Arrays
- 5.7.2 Conformal Arrays
- 5.7.3 Effect of Beam Focusing

FEED LINE BASIC

Introduction

6.1 FEED LINE CHARACTERISTICS

- 6.1.1 TEM Mode
- 6.1.2 Line Impedance
- 6.1.3 Concept of Cutoff Wavelength / Frequency
- 6.1.4 Power Handling
- 6.1.5 Attenuation

6.2 OPEN LINES

- 6.2.1 Open line Definition
- 6.2.2 Wire Lines
- 6.2.3 Strip Lines

6.3 FIBER OPTIC LINES

- 6.3.1 Introduction
- 6.3.2 Fiber Optic Line Family
- 6.3.3 6.3.3 Hollow-Core Photonic Crystal Fiber
- 6.3.4 Optical Waveguides

6.4 CLOSED LINES

- 6.4.1 Introduction
- 6.4.2 Coaxial Lines
- 6.4.3 Waveguide Rectangular (WR)
- 6.4.4 Waveguide Circular (WC)
- 6.4.5 Waveguide of Ridge Double (WRD)
- 6.4.6 Corrugated Elliptical Waveguide
- 6.4.7 Finline Waveguides

6.5 **BASIC OF LINE THEORY**

- 6.5.1 Lumped Circuit Model of a Transmission Line
- 6.5.2 Wave Equations and Boundary Conditions

6.6 MORE INFORMATION ABOUT FEED LINES

- 6.6.1 Introduction
- 6.6.2 Two-Wire Line
- 6.6.3 Coaxial Line
- 6.6.4 Waveguide Rectangular
- 6.6.5 Waveguide Circular
- 6.6.6 Symmetric Stripline
- 6.6.7 Microstrip
- 6.6.8 Slotline
- 6.6.9 Coplanar Waveguide (CPW) and Grounded CPW (GCPW)

6.7 FEED TRANSITIONS / INTERCONNECTIONS

- 6.7.1 Introduction
- 6.7.2 Coax-to-Coax Transition
- 6.7.3 Coax-to-Waveguide Transition / Adapter
- 6.7.4 Coax-to-Microstrip Inline Mount Adapter
- 6.7.5 Coax-to-Coplanar Waveguide Inline Adapter
- 6.7.6 Vertically Mounted (Right-Angle) Coaxial Transitions
- 6.7.7 Rotary Joint
- 6.8 PROPAGATION EM WAVES IN FERRITE LOADED LINES
- 6.8.1 Introduction
- 6.8.2 Faraday Rotation6.8.3 Faraday Rotation Isolator
- 6.8.5 Faraday Kotation Isol
- 6.8.4 Phase Shifter
- 6.8.5 Resonance Isolators
- 6.8.6 Effect of Field Displacement
- 6.8.7 Y-Circulator

DISCONTINUITY IN FEED LINES

Introduction

7.1 COAXIAL DISCONTINUES

- 7.1.1 Dielectric Beads Supporting Center Conductor
- 7.1.2 Step Up in Coaxial line
- 7.1.3 Open-Ended Coaxial Line
- 7.1.4 Gap in Center Conductor
- 7.1.5 Coaxial Junction
- 7.1.6 Coaxial Stub Discontinuities

7.2 DISCONTINUITIES IN PLANAR LINES

- 7.2.1 Introduction
- 7.2.2 Primary Discontinuities

7.2.3 Waveguide Discontinuities

7.3 SCATTERING MATRIX AND RF MULTI-PORTS CIRCUIT EVALUATION

- 7.3.1 Introduction
- 7.3.2 Generalized Scattering (S) Matrix
- 7.3.3 Return and Insertion Loss
- 7.3.4 Scattering Transfer T-Matrix
- 7.3.5 Z- and Y-matrix
- 7.3.6 S-Matrix of Complex Network

MORE COMPLICATED ELEMENTS OF FEED LINES

Introduction

8.1	IN-LINE RESONATORS
8.1.1	Outline
8.1.2	Basic of In-line Resonator. Bounce
	Diagram
	-
8.2	DIRECTIONAL COUPLES AND
	HYBRIDS
8.2.1	Introduction
0 2 2	WD Discrete Directional Courler

- WR Discrete Directional Coupler 8.2.2
- 8.2.3 **Continuous Directional Coupler**
- WR Hybrids 8.2.4
- 8.2.5 WR Ring Hybrid
- 8.2.6 WR Short-Slot Hybrid (Riblet Hybrid)
- 8.2.7 Microstrip Branch Hybrid
- 8.2.8 Microstrip Ring Hybrid
- Wilkinson Power Divider 8.2.9

8.3 DIRECTIONAL COUPLER AND HYBRID APPLICATIONS

- 8.3.1 Signal Flow Measurements
- 8.3.2 Calibration and Test Units
- 8.3.3 Power Leveling
- 8.3.4 Distributed Antenna System (DAS)
- 8.3.5 Power Combiner/Splitter Networks

- 8.3.6 Butler Matrix (Beam Forming Network)
- 8.3.7 Monopulse Concept
- 8.3.8 **Radar Receiver Protection**
- 8.3.9 Frequency Multiplexer

8.4 ANALOGUE FILTERS

- 8.4.1 Overview
- 8.4.2 Normalized Low-pass Filter. Frequency Transformation
- 8.4.3 Filter Phase Characteristics. Time Delay
- 8.4.4 K - and J - Immittance Inverters
- Quarter-Wavelength Section of 8.4.5 Feed Line as Inverter
- 8.4.6 Filters with Direct-Coupled Resonators
- 8.4.7 Coupled Line or Distributed Filters
- 8.4.8 Combline and Interdigital Filter
- 8.4.9 **Evanescent-Mode Filters**
- 8.4.10 Surface Acoustic Wave (SAW) Filters
- Filter Selection Trade-off 8.4.11
- **Optical Filters** 8.4.12

APPROACH TO NUMERICAL SOLUTION OF ELECTRODYNAMICS PROBLEMS

Introduction

9.1 BASIC OF COMPUTER DESIGN

- 9.1.1 Design, Analyze, Build
- 9.1.2 Basic Numerical Methods in Computational Electrodynamics (CEM)
- 9.1.3 Perfectly Matched Layer (PML)

9.2 GRID AND CLOUD COMPUTING

- 9.2.1 Introduction
- 9.2.2 Parallel FDTD Technique
- 9.2.3 Parallel Processing
- 9.2.4 GPU and Cache Acceleration